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SUMMARY 

1. The purpose of comparing two methods of measurement 
of a continuous biological variable is to uncover systematic 
differences not to point to similarities. 

2. There are two potential sources of systematic disagreement 
between methods of measurement: fixed and proportional 
bias. 

3. Fixed bias means that one method gives values that are 
higher (or lower) than those from the other by a constant 
amount. Proportional bias means that one method gives values 
that are higher (or lower) than those from the other by an 
amount that is proportional to the level of the measured 
variable. 

4. It must be assumed that measurements made by either 
method are attended by random error: in making measurements 
and from biological variation. 

5. Investigators often use the Pearson product-moment 
correlation coefficient (r) to compare methods of measurement. 
This cannot detect systematic biases, only random error. 

6. Investigators sometimes use least squares (Model I) re- 
gression analysis to calibrate one method of measurement 
against another. In this technique, the sum of the squares of the 
vertical deviations of y values from the line is minimized. This 
approach is invalid, because both y and x values are attended 
by random error. 

7. Model I1 regression analysis caters for cases in which 
random error is attached to both dependent and independent 
variables. Comparing methods of measurement is just such a 
case. 

8. Least products regression is the reviewer's preferred tech- 
nique for analysing the Model I1 case. In this, the sum of the 
products of the vertical and horizontal deviations of the x,y 
values from the line is minimized. 

9. Least products regression analysis is suitable for calibrat- 
ing one method against another. It is also a sensitive technique 
for detecting and distinguishing fixed and proportional bias 
between methods. 

10. An alternative approach is to examine the differences 
between methods in order to detect bias. This has been recom- 
mended to clinical scientists and has been adopted by many. 
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11. It is the reviewer's opinion that the least products 
regression technique is to be preferred to that of examining 
differences, because the former distinguishes between fixed and 
proportional bias, whereas the latter does not. 
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least products, least squares, model I regression, model I1 
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INTRODUCTION 

A problem that sometimes confronts biomedical investigators 
is how to compare one method for measuring a biological 
variable with another. Most often they wish to  compare the 
accuracy of a new method with that of an established one, the 
new method having the merit of being simpler, cheaper, quicker 
or less invasive. Sometimes they wish to  calibrate one method 
against the other, and sometimes they wish to determine how 
reproducible a single method is over time or as used by 
different observers. 

In their publications, investigators usually plot the observed 
x,y values as a scattergram. They may then adduce the value of 
r,  the Pearson product-moment correlation coefficient, as 
evidence for or against there being good agreement between 
the methods. They may calculate a least-squares regression line 
that they assert describes the relationship between the two 
methods and they may use deviations of that fitted straight line 
from the 45" line of identity as evidence for or against adopting 
the new method or as evidence that a method performs con- 
sistently or otherwise when used by the same or different 
observers. It should be said now that if these analytical tech- 
niques are used, the conclusions reached may be seriously 
flawed. 

Two techniques will be described for analysing experiments 
designed to  compare methods of measurement. In a general 
way, both depend on an understanding of forms of linear 
regression analysis that rely on normal distribution theory. As 
background to  the detailed descriptions of these techniques 
that will follow, it is useful to recall some of the ground rules 
for linear regression analysis. 

SOME GROUND RULES F O R  REGRESSION 
ANALYSIS 

All biomedical scientists are familiar with fitting a straight line 
to  experimental data by the ordinary least squares (OLS) 
technique, which involves minimizing the sum of the squares of 
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List of abbreviations: 

ff, P 
regression (Model I) 

a, b 
Model I parameters 

f f l ,  p’ Population parameters for least products linear OLP Ordinary least products (regression) 
regression (Model 11) OLS Ordinary least-squares (regression) 

a’, b‘ Least products estimates (regression coefficients) of the r Pearson’s product-moment correlation coefficient 
Model I1 parameters 

Bias 
proportional or both 

Error Random error: biological variation, measurement error WLP Weighted least products (regression) 
or both WLS Weighted least-squares (regression) 

E(Y) 
values 

MI, M2 
by two methods 

Population parameters for least squares linear 

Least squares estimates (regression coefficients) of the 

Model I 
Model I1 

n 

Regression in which the X values are without error 
Regression in which both Y and X values are attended 

Number of x,y pairs in a sample 
by error 

Residuals 

SX, SY 

The deviations of y (or x) values from the estimated 

Sample standard deviations of x and y 
Systematic bias between measurements: fixed, regression line 

Estimated (predicted) value of Y in a population of X,Y 

Values resulting from measurement of the same variable 

X,Y 
X>Y 

Values of X,Y pairs in the population 
Values of x,y pairs in a random sample of a population 

of X,Y values 

the vertical deviations of the observed y values from the line (y 
residuals; Fig. 1). The linear regression model for a population 
of X,Y values can be stated as Y = cr+PX+e, where the 
parameters (Y and P are, respectively, the ‘true’ Y intercept and 
the ‘true’ slope of the population regression of Y on X. The 
term E refers to the random error associated with Y and will be 
discussed shortly. However, investigators have only their sample 
values to work with. The sample regression equation can be 
stated as E(Y) = a + bx,  where E(Y) is the estimated value of 
Y in the population of X,Y values, x is an observed value and 
the coefficients a and b are estimates of the corresponding 
population parameters (Y and p. 

Sources of random error 
As stated earlier, the term e in OLS regression refers to the 
random error or variation associated with Y in the population 
of X,Y values. This can originate from: (i) measurement error 
resulting from random imperfections of the measuring instru- 

r 

x values 
Fig. 1. Techniques of regression analysis. Ax, horizontal distance of 
x,y point from line; Ay, vertical distance of x,y point from line; Ap, 
perpendicular distance of x,y point from line. The functions that can 
be minimized include ordinary least squares regression, Z(Ay)z, ordinary 
least products regression, Z(Ay)(Ax), and major axis regression, C(Ap)2. 

ment or random error attributable to those who use it; and (ii) 
biological variation reflecting the effects of random biological 
variation in Y. 

Some assumptions in linear regression analysis 
The assumptions that underlie OLS regression analysis are 
given in all general texts of statistics. Berry, in his specialized 
monograph, lists eight.’ Most biomedical investigators will be 
aware of these, but two are of such importance that they are 
restated below. 

Random error in Y and X 
It is an important assumption of OLS regression that whereas 
the values of Y in the population that has been sampled are 
attended by error, those of X are not. Strictly, this can be so 
only if the X values are categorical: for instance, conditions, 
treatments or places. However, most statistical theorists follow 
the advice of Berkson, which is that if the X values have been 
fixed in advance by the experimenter (e.g. by specifying times, 
doses or settings of a pump), then they can be regarded for 
practical purposes as error-free.2 When X is error-free, Model I 
regression analysis is the proper form to use. It includes the 
well-known OLS regression technique as well as modifications 
of it, such as weighted least squares (WLS) regression.3 

When both X and Y are free to vary and are attended by 
error, some statisticians allow that Model I regression analysis 
may still be used if it is certain, on biological grounds, that Y 
must depend on X and never the reverse.44 This is the case, for 
instance, in dose- or stimulus-response relationships. Even 
then, the Model I regression line should be used for empirical, 
rather than explanatory, purposes.7~ 8 

When investigators plan experiments to compare methods of 
measurement, they must assume that both Y and X will be 
attended by random error. Moreover, it is impossible to decide 
which method should be regarded as dependent and which 
independent and because of this it is wrong to use Model I 
regression analysis. Instead, one or another form of Model I1 
regression analysis must be used. These are described later. 

Normality 
In OLS (Model I) regression, it is assumed that at each level of 
X in the population, the errors in Y conform to the same 
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normal distribution. That is, a t  each level of X, the vertical 
deviations of the Y values from the population regression line: 
(i) are normally distributed; (b) have a mean of zero; and (c) 
the normal distributions have the same variance. Most statis- 
ticians urge that these assumptions should always be tested by 
graphical examination of the sample residuals.3 In the case of 
OLS regression, these are the vertical deviations of the observed 
values of y from the estimated regression line (Fig. 1). These y 
residuals should be examined by means of a normal probability 
plot and by plotting them against the estimated values of Y. If 
both X and Y are attended by random error (Model I1 regres- 
sion), then the horizontal as well as the vertical deviations from 
the line should be examined. 

As in other forms of statistical analysis based on normal 
distribution theory, a moderate degree of non-normality can be 
tolerated. However, it is generally agreed that although progres- 
sive increase in scatter of the sample residuals (often described 
as proportional error) causes only moderate bias in the estimates 
of a and fl in the parent population of X,Y values, it can 
seriously affect the confidence intervals that surround those 
estimates. In biological systems, proportional error seems to be 
the rule rather than the exception. Its origins have not been 
closely studied, but there are probably two. It may be a genuine 
biological phenomenon, in the sense that a biological response 
may become more erratic as the strength of the stimulus 
increases. But, more often, it occurs because measurement 
error increases in proportion to the level of the measured 
variable. 

THE GOAL OF COMPARING METHODS OF 
MEASUREMENT 

It stands to reason that using two different methods for 
measuring the same physiological variable or repeated use of 
the same method by the same or different observers is likely to  
produce similar results. Investigators should not be looking for 
similarities but should be looking for systematic differences or 
biases between the methods. Systematic measurement biases 
can take either or both of two forms (Fig. 2): (i) fixed bias, 
meaning that one method gives values that are consistently 
higher (or lower) than those from the other by a constant 
amount over the whole range of measurements; or (ii) propor- 
tional bias, meaning that one method gives values that are 
higher (or lower) than those from the other by an amount that 
is proportional to the level of the measured variable. 

There are two recognized techniques for detecting and quan- 
titating fixed and proportional biases between methods of 
measurement. One is based on Model I1 regression analysis 
and has been used by clinical chemists for more than 20 years. 
The other was proposed just over 10 years ago for use by 
clinical scientists and can be called the method of differences.9, lo 

But, first, it is necessary to dismiss from further consideration 
the still-popular techniques of correlation and Model I regres- 
sion analysis. 

C 0 R R E L AT I 0  N 

In reports published in biomedical journals it is still common 
practice to plot the values resulting from one method against 
those resulting from the other and to  calculate the Pearson 

product-moment correlation coefficient, r. The value of r and 
a P value for the hypothesis that r = 0 are cited to indicate 
that the two methods give either very similar or very dissimilar 
results. 

There are several serious criticisms of this practice, but the 
most important is as follows. Given that the distribution of 
X,Y values in the population takes the form of a bivariate 
normal distribution and that there is a linear relationship 
between these two variables, Pearson’s r merely indicates the 
scatter of values around the line of best fit, regardless of 
whether the slope of that line differs from unity (proportional 
bias) or whether its intercept differs from zero (fixed bias; 
Fig. 2). It does no more than indicate the strength of the linear 
association between the X and Y variables in the population. 
The information provided by r is, therefore, of no value in 
detecting systematic biases between methods. But, regrettably, 
biomedical investigators still sometimes use it for this pur- 
pose.11,12 

MODEL I REGRESSION ANALYSIS 

Sometimes investigators superimpose on a scattergram of the 
observed x,y values a putative line of best fit. This line has 
generally been constructed by Model I (OLS) regression 
analysis. It may be presented to  show how close it is to  the 45’ 
line of identity. Or the investigators may plan to use the line to 
calibrate one method against the other. Neither of these goals 
can be attained by Model I regression. One easily understood 
defence of this statement is that not one but two lines can be 
drawn by OLS regression (Fig. 3). In one, the sum of the 
squared y residuals is minimized, while in the other the sum of 
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Fig. 2. Systematic bias between methods of measurement, illustrated 
by regression lines of the form E(M2) = a’+@ (MI) from Model I1 
regression analysis. (a) There is neither proportional nor fixed bias, as 
b’ = 1.0 and u’ = 0. (b) There is proportional but not fixed bias 
because b‘ = 0.6 but (I‘ = 0. (c) There is fixed but not proportional 
bias as a’ = 2 but b‘ = 1.0. (d) There is both proportional and fixed 
bias as b’ = 0.6 and a’ = 2. 
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the squared x residuals is minimized. Neither line is a good 
illustration of the interrelation of Y and X in the population 
because both methods are attended by error. Only a Model I1 
regression line (Fig. 3; OLP) can properly be used for calibra- 
tion or to detect bias between the methods. 

MODEL I1 REGRESSION ANALYSIS 

This technique is designed for cases in which both X and Y 
values are attended by random error, especially when it is 
impossible to decide which should be regarded as dependent. 
The deviations of both y and x values from the fitted line must 
be minimized. Whereas in Model I regression there are two 
lines that could describe the X,Y relationship, in Model I1 
there is only one (Fig. 3; OLP), which is sometimes called the 
line of ~ymmetry.~ Advanced statistical texts consider this 
matter: but among the elementary general statistical texts only 
Sokal and Rohlf devote much space to i t 6  Brace gives an 
account of it for physiologists, which is strongly recommended 
reading.5 Richter gives a comprehensive and lucid review, but it 
is not easily acce~sib1e.I~ There are several techniques for 
taking into account the errors attached to both X and Y in 
linear regression analysi~,~+I3,l4 but only two are in common 
use. 

Major axis regression 
This is also known as principal component regression or the 
perpendicular distance method. In it the sum of the squared 
perpendicular distances of the x,y values from the line is 
minimized (Fig. 1). However, it is proper to use this only if: (i) 
the slope of the line is 1.0; (ii) the standard deviations of the x 
and y values are identical (sx = sy); and (iii) the scales of 
measurement of X and Y are the same. Otherwise, the scales of 
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Fig. 3. Model I and model I1 regression lines. Hypothetical example 
of two methods for measuring extracellular fluid space (ECF). Dotted 
lines: model I regression by ordinary least squares of y and ordinary 
least squares of x techniques. Solid line: model I1 regression by 
ordinary least products technique. 

X and Y must be standardized, usually by multiplying the y 
values by (sx/sy).5~~3-~5 These scaled values of y and the original 
values of x are used in the major axis regression analysis, but 
then a and b must be back-transformed by dividing them by 
(s,/sy). This technique and variants of it are popular among 
clinical chemists, who describe it as Deming’s method or 
standard major axis regression.l4-l7 If this rather tortuous 
process is followed, it turns out that standard major axis 
regression is identical to the more easily understood least 
products regression, described below. 

Ordinary least products regression 
This is also known as reduced major axis regression, standar- 
dized principal component regression or geometric mean re- 
gression, The term ordinary least products (OLP) regression is 
preferred here because it describes explicitly how it is executed. 
In OLP regression, the sum of the products of the vertical and 
horizontal distances of the x,y values from the line is minimized 
(Fig. 1). It has been popular for over 30 years among marine 
scientists and zoologists, especially with respect to allo- 
metry.L3,18. 19 However, despite the encouragement given by 
Brace to physiologists and pharmacologists,5 they rarely use 
OLP regression analysis. 

In order to compare two methods of measurement, two 
pieces of information are required: (i) estimates of the slope 
and intercept of the OLP regression line for the population of 
X,Y values (the regression coefficients b’ and a’); and (ii) 
measures of confidence in those estimates in the form of 
standard errors of the regression coefficients a’ and b’ or 
confidence intervals for the corresponding population para- 
meters a’ and p‘. 

The coefficient for the slope of the OLP regression E(Y) = 
a’ + b’x can be calculated by hand in any of three ways. First, 
it can be derived from the values of b in the OLS equations 
E(Y) = a + b x  and E(X) = a f b y  when they are estimated 
by the least squares of y and x, respectively. Then b’ = 
d m ) ;  hence the term geometric mean regression. 
Second, it is given by (by.x)/r, where r is the Pearson product- 
moment correlation coefficient. Third, it is given by sy/sx ,  the 
ratio of the standard deviations of y and x values. 

Because the OLP regression line passes through the point 
x,y (mean x, mean y), the intercept a’ can be obtained from the 
formula a’ = 7- b’K. 

Calculating the 95% confidence intervals (CI) for the popula- 
tion parameters p‘ and Q’ is more difficult. The author has 
tried three techniques: (i) iterative estimation using a specified 
LOSS function in a microcomputer statistics package (this pro- 
vides asymptotic standard errors (ASE) for the regression 
coefficients and, in some cases, 95% CI; it is the preferred 
technique); (ii) Jolicoeur and Mosimann,*O reproduced more 
accessibly by Richter?’ give a formula to calculate approximate 
95% CI for the population parameters a’ and p’; and (iii) 
bootstrapping, by means of a microcomputer spreadsheet. 

A detailed description of how to perform these calculations 
is in Appendix 1. 

_ _  

Assumptions for OLP regression analysis 
Ordinary least products regression analysis depends on a similar 
set of assumptions to OLS, except that both X and Y can be 
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attended by random error. Therefore, not only the vertical 
deviations of Y from the regression line, but also the horizontal 
deviations of X, must conform to normal distributions (a 
bivariate normal distribution) and the scatter of Y axis 
deviations from the line must be the same at all levels of X (and 
vice versa). Unfortunately, in almost every branch of biology, 
random error tends to increase in proportion to the levels of X 
and Y. Just as in least squares regression, this proportional 
error can be dealt with either by data transformation or by 
weighting the residuals. This will be discussed further later. 

Example 
This is taken from Daniel’s set of data in which two methods of 
systolic blood pressure measurement are compared.22 The data 
are given in Table 1 and are plotted in Fig. 4. Altman and 

Table 1. 
systolic blood pressure with another (from Danielzz) 

Patient Method I (MI) Method 2 (M2) 

Data set for comparison of one method of measuring 

~~ 

1 132 130 
2 138 134 
3 I44 132 
4 146 I40 
5 148 150 
6 152 144 
7 158 150 
8 130 122 
9 162 160 

10 168 150 
11 172 1 60 
12 174 178 
13 180 168 
14 180 174 
15 188 186 
16 194 172 
17 194 182 
18 200 178 
19 200 196 
20 204 188 
21 210 180 
22 210 196 
23 216 210 
24 220 190 
25 220 202 

Patients are described as having essential hypertension. It should be 
assumed that the measurements (in mmHg) on each patient were made 
in random order and in the same setting. 

Bland used the same set of data to illustrate the method of 
differences,g which will be discussed later. 

The coefficients of the least products regression M2 = a’ + b’ 
(MI) and the 95% CI for a’ and p’ were calculated by each of 
the three techniques mentioned earlier and described in the 
Appendix. The results are given in Table 2. There is good 
agreement among the techniques, except that the confidence 
interval for a’ is narrower by bootstrapping. From Table 2, the 
following statistical inferences can be made from all three 
techniques: (i) the hypothesis a’ = 0 (no fixed bias between 
the methods) is not rejected because the confidence interval for 
a’ includes zero; and (ii) the hypothesis p’ = I (no propor- 
tional bias between the methods) is rejected at the 5% level 
because the 95% CI for p’ does not include 1. That is, method 1 
gives readings that are progressively higher than those of 
method 2 as the level of systolic blood pressure (SBP) increases 
(Fig. 4). 

In summary, by using OLP linear regression analysis one can 
calibrate one method against another by means of the regression 
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Fig. 4. Scattergram of values for systolic blood pressure (SBP) 
measured by two different methods (MI, M2; see Table 1). Solid line: 
weighted least products (model 11) regression line E(M2) = 12.868+ 
0.867(MI; see Table 2). Dotted line: 45O line of identity. Note the 
increasing scatter of MI and M2 around the regression line as blood 
pressure increases, which has been allowed for by weighting the MI  
and M2 values. 

Table 2. Outcomes of Model I1 (least products) regression analysis for the example of Table 1 

Technique Method a’ 95% CI b‘ 95% CI 
of execution 

OLP Calculator 13.951 - 6.893-32.197 0.861 0.758-0.978 
OLP Computer 13.951 - 6.166-34.067 0.861 0.749-0.973 
OLP/ BTS Spreadsheet 14.010 - 0.826-31.559 0.861 0.755-0.956 
WLP Calculator 12.830 - 6.369-29.897 0.867 0.771-0.976 
WLP Computer 12.868 - 4.783-30.518 0.867 0.764-0.971 

The regression equation is E(M2) = a’ Sb’ (MI). Regression coefficients: a’, M2 intercept; b’, slope of M2 on MI. 95% confidence intervals 
(CI) are for the population parameters a’ and p’. OLP, ordinary least products regression; WLP, weighted least products regression; OLP/BTS, 
based on 1000 bootstrap resamples of sy/sx. See Appendix 1 for details of computational techniques. 
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equation so that results from one method can be compared 
with or converted to results from the other, test whether there 
is a proportional bias between the methods (i.e. whether the 
slope of the regression of Y on X differs significantly from 
unity) and test whether there is a fixed bias between the two 
methods (i.e. whether the intercept of the regression of Y on X 
differs significantly from zero). 

Proportional error 
There is, however, a problem in accepting the inferences arrived 
above. In Fig. 4 it is clear that the scatter of x,y points around 
the regression line increases in approximate proportion to the 
level of SBP. This is even more obvious if an analysis of 
residuals is performed (not shown). This proportional error 
breaches one of the important assumptions of linear regression 
analysis and it commonly occurs in method comparison 
studies.9,10.14~LS,23,24 There are two popular ways of coping with 
it. 

Log-log transformation 
The simplest approach is to logarithmically transform both x 
and y values before undertaking the regression analysis. This is 
easy to execute, it usually evens out scatter around the line and 
it provides a more accurate tool for calibrating one method 
against another. However, it leads to difficulties in making 
inferences about the presence of proportional or fixed bias. 

Weighted regression 
An alternative is to weight the values of x and y in an 
analogous fashion to weighted least squares (WLS) regression 
in the context of Model I regression analysis.3 Monte Carlo 

simulation studies of standard major axis regression show that 
type I error in testing for proportional bias is better controlled 
if weighting is done.l4?15 It is likely that this also holds true for 
the closely related OLP regression. A description of how to 
execute weighted least products (WLP) regression is in Appen- 
dix 1. The outcome of working the example by this technique 
is given in Table 2. In this case, the WLP regression coefficients 
are not very different from those by OLP, but the population 
CI are consistently narrower. The inferences from hypothesis 
testing are unchanged. 

MODEL I1 VERSUS MODEL I REGRESSION 
ANALYSIS 

A matter on which all serious exponents of method comparison 
techniques agree is that Model I regression analysis gives 
biased regression coefficients and may lead to false inferences. 
The discrepancy between the two models is greatest when 
measurements are made over a narrow range of values located 
some distance from zero (Figs 3,4), and when random error is 
large (Fig. 3).14,1s The poor performance of both OLS and 
WLS regression analysis of the example of two methods for 
measuring SBP is apparent in Table 3. The slope of M2 on M1 
from Model I (OLS or WLS) analysis is less than that from 
their Model I1 counterparts and from OLP and WLP analysis 
(Tables 2,3). This is always the case. Thus, the Model I 
regression equation would provide inaccurate calibration of 
one method against the other. Of greater importance, the 
Model I approach invites the false inference that a, the Y 
intercept, is greater than zero and conveys the implication that 
there is fixed, as well as proportional, bias between the methods. 

Table 3. Outcomes of Model I (least squares) regression analysis for the example of Table 1 

Technique Method U 95% CI b 95% CI 
of execution 

E(M2) = a+b(MI)  
0.822 0.711-0.933 OLS Computer 20.888 1.000-40.775 

WLS Computer 17.847 0.342-35.352 0.839 0.737-0.942 
E(M1) = a+b(M2) 

OLS Computer - 7.410 1.109 0.960-1.258 - 32.564-17.743 
WLS Computer - 8.557 - 30.616-13.502 1.116 0.979-1.252 

Least squares regressions of M2 on MI (above) and MI on M2 (below). Regression coefficients: a, intercept; b, slope; 95% confidence intervals 
(CI) are for the population parameters (Y and 8. OLS, ordinary least squares regression analysis; WLS, weighted least squares regression analysis. 
Regression analysis was performed with LOSS function on a computer (see Appendix 1 ) .  

Table 4. Outcomes of method of differences analysis for the example of Table 1 

Test statistic Value n or d.$ P 
Original data 

(i) Slope of (MI - M2) on (MI + M2)/2 r 0.450 n = 25 0.024 
(ii) Mean (MI - M2) = 10.72 versus zero t 5.97 d.$ = 24 <0.0001 
(iii) 95% population CI for (MI - M2) - 7.8-29.3 

Log-log transformed data 
(i) Slope of (logM1 - logM2) on (logM1+ logM2)/2 r 0.298 n = 25 0.147 
(ii) Mean (logM 1 - logM2) = 1.06 versus zero t 6.48 d.$ = 24 <0.0001 
(iii) 95% population CI for M1/M2 0.96-1.17 

r, Pearson product-moment correlation coefficient; CI, confidence interval; t, one-sample t statistic. For (i), P value tests the hypothesis r = 0. 
For (ii), P value tests the hypothesis mean (MI - M2) = 0. 
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ANALYSIS OF DIFFERENCES 

A strategy that is very different to that of regression analysis or 
correlation has been proposed by Altman and Bland?, 10 referred 
to here as the method of differences. Using the notation MI 
and M2 to describe values obtained by the two methods, the 
starting point is to calculate the difference (MI - M2) for each 
pair of values. These differences are then plotted against the 
corresponding means, (MI i- M2)/2. As Altman and Bland 
point out, this procedure resembles the analysis of residuals 
used to test whether the assumptions governing OLS regression 
analysis are satisfied. Thus, the values of (M1 - M2) should be 
normally distributed and the scatter of the values of (MI - M2) 
should be uniform for all levels of (MI i- M2)/2. These are the 
same requirements as for residuals in OLS regression.3 

Altman and Bland propose the following analyses of the plot 
of (MI - M2) against (MI + M2)/2.9,10 If there is no propor- 
tional bias between the two methods, then the regression of 
differences on means should have a slope of zero. They 
recommend calculating the Pearson product-moment correla- 
tion coefficient and testing the hypothesis that r = 0. They do 
not say so explicitly, but the use of r implies that the data 
points in the plot come from a bivariate normal distribution (as 
they should do, because both variables are attended by random 
error). If there is no fixed bias between the two methods (or, as 
Altman and Bland put it, no relative bias), then the mean of 
(MI - M2) should be zero. They recommend this hypothesis 
be tested by a one-sample t-test. They suggest that the 95% CI 
for the population of (MI - M2) differences can be used to 
decide whether a new method is an acceptable substitute for, or 
alternative to, the established one. 

Example 
In their original description of the method of differences, 
Altman and Bland used the same data set for two methods of 
SBP measurement as was used earlier (Table The outcome 
of using their technique to analyse these data is given in Fig. 5 
and Table 4. It can be seen that: (i) there appears to be an 
upward trend of the differences as the mean increases, confirmed 
by r # 0 (P = 0.024); (ii) the differences are generally located 
above the zero line and a one-sample t-test strongly rejects the 
hypothesis that the mean of (MI - M2) = 0 (P<O.OOOl); and 
( 5 )  there is a wide 95% CI for the population of (MI - M2) 
values ( - 7.8 to 29.3 mmHg). 

Thus, Altman and Bland would invite the inferences that the 
upward trend of (M1 - M2) on (M1-k M2)/2 indicates that 
there is a proportional bias between the two methods, (i.e. 
method I gives progressively higher readings than method 2 as 
the level of SBP increases), that mean (MI - M2)>O indicates 
that there is a fixed bias between the two methods (i.e. over the 
range of SBP encountered method 1 gives readings that are 
higher by a constant amount than those from method 2) and 
the wide 95% CI for (MI - M2) provides the basis for an 
opinion that methods 1 and 2 could not be safely interchanged 
in clinical practice. 

These inferences differ from those resulting from least 
products regression, which were that there was a proportional 
bias but not a fixed bias (Table 2). As it happens, they coincide 
with those that could be made from Model I regression analysis 
(Table 3). 

Difficulties with the method of differences 
There are two difficulties with the Altman-Bland method that 
are not fully explored by its originators although they are 
alluded to by Chinn.23 First, the tests for proportional and 
fixed bias are not independent. Using Pearson’s r to test for 
proportional bias is a reasonable approach, given that both M 1 
and M2 values are subject to random error, but it is wrong to 
attribute a difference between mean (M1 - M2) and zero to the 
presence of a fixed bias. It can equally well be accounted for by 
a mixture of proportional and fixed bias, both acting in the 
same direction. Conversely, if no difference were found between 
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Fig. 5. The method of differences used on the same data as shown in 
Fig. 4. Dashed lines: 95% CI for the population. (a) Original values. 
Note the increasing scatter of (MI - M2) as (M1-k M2)/2 increases. 
(b) Loglo transformed values of MI and M2. Note the increase in 
scatter has been reduced, although not eliminated. 
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mean (MI - M2) and zero, this could result from there being a 
proportional bias in one direction and a fixed bias in the other. 
Second, the scatter of the (M1 - M2) values increases pari 
passu with the value of (MI + M2)/2 (Fig. 5a). This is to be 
expected from the proportional increase in error in the scatter- 
plot of M2 on M1 (Fig. 4). This proportional error is commonly 
seen when the method of differences is ~ s e d . ~ , ~ ~ , ~ ~ - ~ ~  It intro- 
duces bias into estimates of the slope of (M1 - M2) on 
(MI + M2)/2. Log-transformation of the original data has 
been suggested both by the originators of the method of 
differences10 and by Chinn.23 However, although this somewhat 
reduces the fan-shaped scatter of the differences (Fig. 5b), it 
creates new problems of interpretation. The term (logM1 - 
logM2) corresponds to log (Ml/M2). This means that if there 
is proportional bias but no fixed bias between the methods, 
both the slope of the regression of log(MI/M2) on (logM1-k 
logM2)/2 and the correlation coefficient will be close to zero. 
However, if there is fixed but not proportional bias, the slope 
and r will not be zero. If the mean of log (M1/ M2) differs from 
zero (Table 4), this suggests the presence of proportional bias 
(given no fixed bias). Furthermore, the antilogged 95% CI for 
log (MI/M2) is that for the ratio Ml /M2 in the population. 
Thus, although log transformation renders the scatter of 
(MI - M2) more uniform, it creates new problems of inter- 
pretation. 

Finally, it is worth reinforcing a point that Bland and 
Altman made re~ently.~’ It is that even if investigators regard 
method 1 as a ‘gold standard‘, the X axis should remain as 
(M1+ M2)/2 and should not be changed to M1. Some investi- 
gators have fallen into this trap.28-30 

LEAST PRODUCTS REGRESSION VERSUS 
THE METHOD OF DIFFERENCES 

The chief advantage claimed for the method of differences is 
that it is comprehensible to clinical investigators and that it is 
simple to execute. Its popularity can be gauged by its adoption 
by the British Hypertension Society as the preferred technique 
for comparing methods for measuring BP.26 Yet the foregoing 
discussion indicates that although the method of differences is 
easy to execute, it is not easy to interpret the results in terms of 
identifying fixed or proportional bias. 

Although least products regression analysis is more difficult 
to execute than the method of differences, the outcome may be 
easier for biomedical investigators to understand. They are 
accustomed to viewing scattergrams on which regression lines 
of best fit are superimposed and they are familiar with the use 
of CI. It is just that, in the past, Model I regression analysis has 
been used to fit the lines instead of Model 11. It must be 
admitted that the Model I1 regression approach shares with the 
method of differences the problem of handling proportional 
error, in which the scatter of x,y points increases with the mean 
level, which is so common in method comparison studies. 
However, this can be catered for by using weighted least 
products regression analysis. 

Both techniques rely on the assumption that the residuals 
around regressions are normally distributed. This is testable if 
the number of experimental x,y points is sufficiently large. If 
the normality assumption is not fulfilled or is in doubt, non- 
parametric bootstrapping techniques can be used to execute 

Model I1 regression analysis, especially for estimating CI,14,31 
although the intervals may be too narrow (Table 2).32 

0 THER CONS ID E RAT1 ON S 

Homogeneity of the observations 
In the example that was analysed, one pair of observations was 
made in each of many subjects. Least products regression or 
the method of differences can be used equally well in the case 
that many measurements have been made in a single subject, 
provided they have been made independently in random order. 
What of the case that many measurements have been made in 
many subjects? This creates a very special problem of analysis, 
which has been reviewed for biomedical investigators by 
Feldman.33 In short, it is not allowable to pool all the within- 
and between-subject x,y data points and perform Model I1 
regression analysis. Nor, by extension, is it allowable to use the 
method of differences in this way, although this has sometimes 
been done.26.29 However, the weighted least squares solution to 
this problem proposed by Feldman applies to Model I regres- 
sions and cannot be transferred directly to Model I1 regressions. 
In future, elegant, computer-intensive techniques may be de- 
vised to solve this problem. In the meantime, the best solution 
(although it is imperfect) may be merely to take the between- 
subject means of the coefficents a’ and b’, provided a sufficient 
number of observations (for instance 20) have been made in 
each subject to give some confidence in the coefficients.34 

Non-linearity 
So far it has been assumed that the relationship between one 
method of measurement and another is linear. This is not an 
unreasonable assumption because it is what usually happens in 
practice. But what if the relation is non-linear? It clearly 
indicates that there is a systematic bias between the two 
methods and that this should be picked up by examining a 
scattergram. If calibration, rather than detection of bias, is the 
goal, then it would be logical to use non-linear OLP or WLP 
regression analysis. This can be done as an extension of the 
LOSS function technique referred to earlier. 
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APPENDIX 1 

There are two main goals in ordinary least products (OLP) and 
weighted least products (WLP) regression analysis. One is to 
make best estimates of the population parameters: that is, 
values for the coefficients in the linear regression equation 
E(Y) = a' + b'x (where a' and 6' are used to distinguish least 
products from least squares regression). The other is to obtain 
robust values for the standard errors attached to the regression 
coefficients or CI for the population parameters (Y' and /3' 
(usually 95% intervals). 

Three techniques for achieving these goals are described. 
The first uses the LOSS function in microcomputer statistics 
packages and should be regarded as the benchmark. The 
second is to use a hand-held calculator or spreadsheet program. 
The third uses non-parametric bootstrapping to  obtain CI. The 
first two techniques give identical values for the regression 
coefficients. The problem lies in obtaining robust values for CI. 

Microcomputer 
This makes use of the LOSS function that is provided by 
microcomputer statistics packages that have non-linear regres- 
sion modules. To use LOSS one has to specify the function that 
is to be minimized in order to fit a regression. The program 
then estimates the best-fitting linear regression according to 
this function by an iterative process and provides estimates of 
the regression coefficients and their standard errors. The 95% 
CI for the population parameters can be easily calculated from 
equations (10) and (1 1) below. 

The example of Table 1 has been worked with SPSS Ad- 
vanced Statistics 6.1.3/w (SPSS Inc., Chicago, IL, USA), 
STATISTICA 5.l/w (Statsoft Inc., Tulsa, OK, USA) and SYSTAT 

5.O/DOS, 6.0/DOS and 6.0/w (SPSS Inc.). All these packages 
gave correct values for the regression coefficients (Tables 2,3). 

standard errors and CI, whereas SYSTAT 6.0 (IDOS, /w) did 
not. SPSS 6.1.3/w used bootstrapping to arrive at standard 
errors and CI. The documentation of the bootstrapping tech- 
nique was difficult to follow and the CI were narrower than 
those computed parametrically. Readers are advised to use 
STATISTICA 5.1 / w or SYSTAT 5.0/ DOS. 

Algebraic notation is used to formulate the LOSS functions 
given below, but this can easily be translated into the language 
required by an individual package. 

Ordinary least squares regression analysis 
As a simple example, OLS regression analysis can be executed 
by the LOSS function (although this is taking a sledgehammer to 
crack a nut!). The required LOSS function is: 

STATISTICA 5.1 / W and SYSTAT 5.0/ DOS gave Correct Values for 

This function represents the square of the vertical deviation of 
the observed y value from the regression line (the y residual). It 
is the sum of these squares that is minimized in OLS regression. 
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Weighted least squares regression analysis 
When there is proportional error in Y (i.e. the scatter of 
observed y values increases in proportion to the level of x), 
WLS regression analysis is preferred. The required LOSS function 
is: 

((Y - (a+bx))/X)2 (2) 

This function divides each y residual by the corresponding 
value of x, then squares it. 

Ordinary least products regression analysis 
In this case, it is the sum of the products of the y and x 
residuals that is miminized. The required LOSS function, arrived 
at by simple algebra, is: 

(Y - (a  + bx))2/lbl (3) 

where Ibl is the regression coefficent expressed as an absolute 
(positive) value. 

Weighted least products regression analysis 
In WLP regression analysis, the y residuals are divided by x, 
the x residuals are divided by y and then their products are 
minimized. The LOSS function can be worked out from equation 
(3) as: 

((Y - (a+ bx))2)/(lbl)(x)(Y) (4) 

Calculator or spreadsheet 
OLS regression analysis 
How this can be done on a hand-held calculator is described in 
all general texts of statistics. 

WLS regression analysis 
Neter describes a complicated method for doing this by hand.3 
It is made much easier by using a computer spreadsheet: 

where x is the original x values, y is the original y values, w is 
the weighting factor (which is 1 / xz), wx is the product of w and 
x (which corresponds to 1/x), wy is the product of w and y, 
wxy is the product of w, x and y (which corresponds to y/x) 
and Cwx2 corresponds to n, the number of x,y pairs, as 
w = l/x*. 

The standard errors of the coefficients are calculated as: 

cwx2 - (~WX)Z/ x w  
SEb = (7) 

(8) 
Error MSq 

C(wx - E)* 
SE. = 

where =is the mean wx and the notation is otherwise as given 
earlier. Error MSq (error mean square) is given by the formula: 

Error MSq = z(WRES)z/d.$ (9) 

where E(Y) is the value of Y predicted from the corresponding 

value of x, using the coefficients for the WLS regression 
equation, RES is the vertical deviation (residual) of y from the 
regression line (y - E(Y)), WRES is the weighted residual 
(RES/x) and d.$ are the degrees of freedom (n - 2). 

The standard errors for a and b can be converted into 95% 
CI by the conventional formulae: 

b f t (SEb) (10) 

a k t (SE,) (11) 

where the value oft  is that corresponding to two-sided P = 0.05 
at (n - 2) dJ For the example, t = 2.0687. The values for a 
and b and for the 95% CI for a and /3 are almost identical to 
those obtained by using a LOSS function on a computer (see 
Table 3). 

OLP regression 
The coefficient for the slope of the OLP regression E(Y) = a’ + 
b’x can be calculated by hand in any of three ways. First, it can 
be derived from the values of b in the OLS equations 
E(Y) = a + bx and E(X) = a + by when they are estimated by 
ordinary least squares regression of Y on X, and X on Y, 
respectively. Then: 

b’ = d(bY.J(l / bx.y) 

Hence the phrase ‘geometric mean regression’ which is some- 
times used. Second, the coefficient of the slope of the OLP 
regression is given by (by.x)/r, where r is the Pearson 
product-moment correlation coefficient. Third, it is given by 
sy/sx ,  the ratio of the standard deviations of the y and x values. 

Because the OLP regression line passes through the point 
x,y (mean x, mean y), the intercept a’ can be obtained from the 
formula: 

_ _  

a’ = 7 - b’x (12) 

Jolicoeur and Mosimann,zo reproduced more accessibly by 
Richter,*’ give a formula to calculate approximate 95% CI for 
the population parameters a’ and p‘. The first step is to find 
the value of r for the least products regression. This is identical 
to the conventional Pearson product-moment correlation co- 
efficient for x and y. The Jolicoeur formula depends on calcu- 
lating B as: 

B = F(l - rz)/(n - 2) (13) 

where the value of Fcorresponds to P = 0.05 at d$ (I, n - 2). 
Then, the upper and lower 95% confidence limits for p’ are 

calculated, respectively, as: 

b ’ ( m  + fi) (14) 

b ’ ( m 1 -  fi) (15) 

and 

These hand-worked limits for p’ are similar, although not 
identical, to those given by the LOSS method (see Table 2). 

The limits for a‘ can be obtained by the somewhat dubious 
device of substituting the upper and lower confidence limits for 
p’ in equation (12). They are not very different from those 
obtained by the LOSS technique (Table 2). 
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WLP regression 
Accurate values for 6' can be obtained from the formula: 

b ' =  J m  (16) 

where by.x and bn, are the WLS coefficients for the regression of 
y on x, and x on y, respectively (see Table 3). 

The intercept a' can be obtained from equation (15). The 
accuracy of 6' is guaranteed, while that of a' is a little less 
reliable (see Table 2). 

Obtaining reliable 95% CI for a' and p' is more problematic. 
One approach is to average the two closely similar values of r 
resulting from WLS regression and enter them into equations 
(12) through to (15). This resulted in intervals that were of 

similar width to, but differently centred from, those obtained 
by using the LOSS function (Table 2). 

Non-parametric bootstrapping 
For OLP regression this was performed on a microcomputer 
spreadsheet by creating 1000 random resamples of the original 
x,y values of Table 1. For each resample, b' was calculated as 
sy/sx and a' from equation (15). The coefficients were ranked 
and the 25th and 975th values were taken as the 95% confidence 
limits. The CI for both a' and /3' are narrower than those 
estimated parametrically (Table 2), as they were when SPSS 
was used (see earlier). This is an effect of the truncated tails of 
raw bootstrap di~tributions.3~ 


